Search results for "nuclear astro-physics"

showing 3 items of 3 documents

The beta-delayed proton and gamma decay of 27P for nuclear astrophysics

2013

The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p, γ) 25Al(β +ν) 25Mg(p, γ) 26Al, but this chain can be by-passed by another chain, 25Al(p, γ) 26Si(p, γ) 27P and it can also be destroyed directly. The reaction 26mAl(p, γ) 27Si∗ is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, throug…

nuclear astro-physicsindirect methodsdaughter nucleusproduction ofresonant capturehelium-burningreaction chainslow-energy protons
researchProduct

The study of neutron-rich nuclei production in the region of the closed shell N=126 in the multi-nucleon transfer reaction 136Xe+208Pb

2015

Expérience LNL/PRISMA; International audience; The unexplored area of heavy neutron rich nuclei is extremely important for nuclearastrophysics investigations and, in particular, for the understanding of the r-process ofastrophysical nucleogenesis. For the production of heavy neutron rich nuclei located along theneutron closed shell N=126 (probably the last "waiting point" in the r-process of nucleosynthesis)the low-energy multi-nucleon transfer reaction 136Xe+208Pb at Elab=870MeV was explored.Due to the stabilizing eect of the closed neutron shells in both nuclei, N=82 and N=126, andthe rather favorable proton transfer from lead to xenon, the light fragments formed in this processare well b…

Historynuclear astro-physicsProtonNuclear Theoryspektrometritchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyEducationNuclear physicsXenonNucleosynthesisneutron-rich nuclei0103 physical sciencesNuclear astrophysicschemical elementsNeutron010306 general physicsNuclear ExperimentOpen shellheavy neutron rich nuclei PRISMA spectrometerPhysicsneutron shellsSpectrometer010308 nuclear & particles physicsbeam linesclosed shellsComputer Science Applicationsneutron beamschemistrytime of flightAtomic physicsNucleon
researchProduct

Ion traps in nuclear physics : recent results and achievements

2016

Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purified ion sa…

Condensed Matter::Quantum GasesioniliikkuvuusspektrometriaAtomic mass measurementstrap-assisted spectroscopyastrofysiikkaNuclear binding energyhiukkasfysiikkaPhysics experimentsAtomic massNuclear astro-physicsPhysics::Atomic PhysicsDecay spectroscopiesydinfysiikkaMass measurementsIon traps
researchProduct